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Two-Dimensional Aperiodic Flows in a Rectangle 
Subject to a Harmonic Forcing 

Yong Kweon Suh* 
(Received July 1_5, 1996) 

An unsteady two-dimensional  incompressible flow inside a rectangular container under a 

torsional oscillation has been numerically obtained. Effect of three parameters, the aspect ratio, 

the dimensionless angular frequency, and the Reynolds number, on the flow pattern's develop- 

ment is studied. The flow is irregular and aperiodic at the Reynolds number 5(100.Some aspects 

of  the vortical flow dynamics are investigated. Observed in the numerical experiment are 

stretching, folding, splitting, merging, and curling etc. 
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1. I n t r o d u c t i o n  

This paper presents two-dimensional  incom- 

pressible flow patterns inside a rectangular con- 

tainer under a torsional oscillation. Figure 1 is a 

schematic illustration of the container shape and 

the way it oscillates. This flow model is in fact 

similar to that studied by van Heijst, Davies, and 

Davis(1990) and Suh(1994) as a sp in-up  proc- 

ess; the only difference lies in that they considered 

the suddenly and then uniformly rotating case, 

whereas here the container rotates back and forth 

in a sinusoidal mode. 

While in the spin-up process the flow decays 

after some finite time, in the sinusoidal forcing 

like the present study it never decays. The flow 

patterns also undergo more complicated and 

diverse development in this model. In view of 

symmetric properties of  both the container geome- 

try (spatial symmetry) and the forcing term 

(temporal symmetry), it is relevant to concentrate 

on whether the flow also preserves the symmetry 

as paremeter values are varied. At low Reynolds 

number, the flow keeps the spatial as well as 

temporal symmetry. At higher Reynolds number, 

it is broken both spatially and temporally. The 
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flow field thus becomes neither regular nor peri- 

odic. 

The final goal of this study is to develop some 

theoretical or numerical tools for analysis of the 

stirring of aperiodic or turbulent flows; tools such 

as the Poincare section and the unstable manifold 

developed for the periodic two-dimensional  or 

steady three-dimensional  flow may not be appli- 

cable to aperiodic flows (e. g. Aref, 1984 and 

Ottino, 1989). In this paper, however, we focuss 

our attention on the flow field only. 

In w the flow model is fbrmulated and the 

numerical methods are briefly explained. Symme- 

try properties are analysed in w w presents the 

numerical results. The effect of three parameters, 

the aspect ratio, the angular frequency, and the 

Reynolds number on the flow development is 

separately considered. We sumnlarize the impor- 

tan! findings in w 

Fig. 1 

sin oo't" ~ Y" 

A rectangular container containing a fluid 
subject to a horizontal angular oscillation. 
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2. Formulation and Numerical  
Method 

Scaling the lengths by w, the time by l / Q ,  and 

the velocities by w.Q, we can write the dimension- 
less governing equations as 

3~ f 8r 8~ 8r 8~ '_  1 V2~.+2 cos cot (l ) 
3t 3y 3x 3x 3y Re 

V2r = ~" (2) 

where V ~ is the Laplacian operator,  t is the 

dimensionless time, (x, y) is a dimensionless 

coordinate system moving with the container, r 

is the dimensionless s t reamfunct ion,  ~" is the 

dimensionless vorticity, co is the dimensionless  

angular frequency given by 

co* 
co= .(2 (3) 

and Re is the Reynolds number defined as 

zt,z~Q Re = (4) 

where p is the kinematic viscosity of  the fluid. 

The origin of  the coordinates (x, y) is at one 

corner of the container, and x and y are along the 

long and short sides, respectively. 

The initial values for ~ and r are set zero. 

Along the four sides of the rectangle, the no-s l ip  

condition is applied; 

r  at x=O,  a and y=O,  1 (5) 

where n is along the normal direction at each 
boundary,  and 

l a = - -  (6) 
co 

is the aspect ratio. 

We construct a grid system with J x K meshes 
for the entire domain  for the spatial discretiza- 

tion. The central difference is used for all the 

spatial derivatives in the equations and the inte- 

gration of  (1) over the time is performed by using 

the forth-order Runge-Kutta  method. The Pois- 

son equation, Eq. (2), is integrated by the line 

SOR method. Detailed numerical methods and 

procedure are given in Sub (1994, 1997) and will 

not be repeated here. 

3. Symmetry Properties 

We expect intuitively that the solution can be 

antisymmetric with respect to the center point (a/ 
2, 1/2). Indeed, in the governing Eqs. (1) and 

(2), replacing r  y, t) by r  l - y ,  t) 

and ~'(x, y, t) by ~(a -x ,  l - y ,  t) does not alter 
the original operators. This fact supplemented by 

the geometrical symmetry (boundary-condi t ion 

symmetry) guarantees the antisymmetric nature of 
the solutions; 

r  y, t ) = r  l - y ,  t) and 

~'(x, y, ) = ~ ' ( a - - x ,  l - - y ,  t) (7) 

On the other hand, regarding the temporal 

structure, we can also assume one of the following 

properties; either 

r  y, t ) = - r  y, t+T/2 )  and 

~(x, y, t )=--~(a--x ,  y, t+T/2)  (8a) 

o r  

r  y, / ) = - - r  l - - y ,  t+T/2 )  and 
~'(x, y, t ) = - ~ ' ( x ,  l - y ,  t+T /2 )  (8b) 

where T=27c/w is the dimensionless period. If 

the spatial antisymmetric nature is simultaneously 

satisfied, the above two properties are not in- 

dependent. 

We will see from the numerical results in the 

next section that at low Reynolds numbers, these 

properties are indeed preserved, but we will also 

see that the symmetry properties are lost at high 

Reynolds numbers. 

4. Numerical  Results  and Discussions 

In the present numerical experiment at high 

Reynolds numbers, the numerical instability 

seems to be sensitive more to the spatial resolu- 

tion, that, is A x = A y = I / ( K - - 1 )  than to the 

time step At=27c/coN. For instance, for a = 3 ,  co 

-----0.4, and Re=5000, the mesh system J •  

241 x 81 shows instability after 2 periods for both 

N = 1600 and 2400, while the mesh system J •  

=301 x 101 is successful upto 10 periods for N =  

1600.The instability is also affected by a. For a =  

4, co=0.4, and /r  the mesh system J •  
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Table 1 Parameter values for 7 cases of numerical experiment. M is the number of periods of calculation. 

C ases 

A 

B 

C 

D 
[- 

E 

G 

60 

0.4 

0.4 

0.4 

0.4 

0.4 

0.2 

1.0 

Re 

5000 

5000 

5000 

500 

1500 

5000 

5000 

J x K  

101 x 101 

201 x 101 

361 x 121 

201 x 101 

201 x 101 

201 x 101 

241 x 121 

N 

2400 

2400 

2400 

2400 

2400 

4800 

1200 

M 

30 

20 

15 

20 

20 

15 

15 

=401 • 101 shows instability after 2 periods for 

N =  1600. On the contrary, for a =  1, w=0.4, and 

Re=5000,  the mesh system J x K = I 0 1  • 101 is 

successful upto 30 periods for N~2400 .  It is 

conjectured that the instability is caused by the 

stronger vortex motion at higher aspect ratios. 

Three physical parameters to be studied are a, 

the aspect ratio, w, the dimensionless angular 

frequency, and Re, the Reynolds number. Table I 

shows 7 sets of parameter values that are used in 

obtaining the numerical solutions. 

4.1 Effect  o f  a 

With c0=0.4 and Re=5000,  three values of a 

are used in studying the effect of a (cases A, B, 

and C in Table l). Figure 2 shows evolution of 

streamline and vorticity patterns for the last one 

period of the case A. Let's first look into the 

vorticity pattern. During the first half period, 0<_ 

t ~  T /2 ,  four positive vortices ('white' in the 

figure) generated near four corners are merged in 

the core. At the end of the first half period (at l 

= T / 2 ) ,  four negative vortices ( 'black' in the 

figure) are generated near the same corners. These 

vortices', are then merged during the latter half 

period in the core. Referring to Fig. 2(a),  we see 

that the flow is almost clockwise during the first 

half period and anticlockwise during the second 

half period. The flow is almost stagnant at the 

intermediate times, i. e. at t = 0 ,  T/2 ,  and T. 

This indicates that, for this case, the flow is 

almost anticyclonic (rotating in a direction oppo- 

site to ~Ehe container's motion; refer to e. g. Lugt, 

1983). We further note that the antisymmetric 

property (7) is present. 

For the flow to be periodic, the pattern at t = 

0 must be the same as that at l = T. 11: is interest- 

ing to note from Fig. 2 that one pattern can be 

reproduced by turning the other as much as 90 ~ 

angle. The temporal periodicity can be detected 

by the spatial-average quantity ~ defined as 

where A is the area of the entire flow field. As 

shown in Fig. 3, the case of a = 1 yields a periodic 

function ~, which tentatively predicts that the 

pattern may be periodic. This figure further shows 

that at a = 2  and 3, the flows must be aperiodic. 

Shown in Figs. 4 and 5 are streamline and 

vorticity patterns for a = 2  and 3, respectively, 

during the final period of computation. Indeed, 

the flow patterns at t = 0  are not reproduced at l 

= T.  Moreover, no symmetry properties in the 

flow patterns are observable for these cases. So, 

the flows are neither ordered nor periodic. We see 

that the patterns (especially the vorticity pattern) 

are so much complicated in structure and the 

pattern's evolution is hardly understandable. 

However we can pick up the most notable and 

common feature; an interior cell generates a vor- 

ticity of opposite sign near the touching bound- 

aries, which after assembled becomes another cell 

of comparable size (e. g. tile region near the 

boundary x = 2  during the first half period in Fig. 

4). 

By comparing the two cases, we can understand 

some distinctive features in each pattern's devel- 

opment. For the case of a = 2  (Fig. 4), the flow 

solution can be characterized by competition 

between two-cell structure and three-cell struc- 

ture. At t = 0  the field is composed of three cells. 

The central anticlockwise cell is then stretched, 
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(a) The streamline patterns 

. . , ,  o ~  . , .  , ,  o ,  , .  , ,  . ,  , ,  , ,  . , ,  , ,  , ,  , ,  

Qiill/ /i 
. . . . . . . . . . . . . . . . . .  ~ 1 7 6  . . . . .  , , .  , .  ~  , ,  , ,  

(b) The vorticity patterns 

]Fig. 2 Streamline patterns (a) and the vorticity 
patterns (b) for d l, c,J 0.4, and ]~c,--5000 
(case A). The increment of the stream func 
tion in (a) is 0.01. These plots are for the last 
one (30Ih) period. 
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Fig. 3 

a=3 

,0 " . . . . .  f L _ _ _  

History of ~ for three values of a shown 
(cases A, B, and C from above); w=0.4, Re 
=5000. 

splitted, and disappears, resulting in a two-cel l  

structure at t----2 T/8. After  this instant, however,  

another  anticlockwise cell is generated near the 

le f t -bot tom corner and then moves to the interior 

region yielding a three-cell  structure at t = 4  T/8.  
From this time, the clockwise cell at the righthand 

side undergoes a similar process giving two-cel l  

(at t = 5 T / 8 )  and three-cel l  ( t = 6 T / 8 )  struc- 

tures. During the entire course, some cells are 

growing  by being fed with the vorticity generated 

by the neighboring opposi te  cells and some are 

weakened by being stretched and splitted into a 

few parts by the action o f  the neighboring cells. In 

general, we can say that the central cell corre- 

sponds to the latter, while the side cells to the 

former. A typical feature in the dynamics o f  

vortici ty blobs is ' folding' ;  for instance, a vertical 

streak o f  negative vorticity shown at x ~ 1.8 at ! = 

0 in Fig. 5 is folded at t =  T/8. We can also see 

a lot of  such folded structures in Figs. 4 and 5. 

For  the case of  a = 3  (Fig. 5), the cell structure 

is slightly more stable than the case of  a = 2  

( 'stable '  in the sense that each cell tends to keep 

its posi t ion) .  The flow field is characterized by a 

four-cel ls t ructure during the first half  period and 

three-cel l  structure dur ing the second half  period. 

For  the whole period, two cells at the lefthand 
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Streamline and vorticity patterns for a --2, co =0.4, and Re' -5000 (case B). The increment 
of the stream function is 0.02. These plots are for the last one (20th) period. 

side region keep each position, and when one 

grows the other shrinks, and vice versa. The cells 

at the righthand side are, however, suffering a 

rather catastrophic event. At the first stage (t_<2 

T/8),  the anticlockwise cell situated to the inte- 

rior is shrinked and the clockwise cell is enlarged. 

The continuous feeding of the negative vorticity 

generated near the upper boundary makes the 

anticlockwise cell grow and finally moves 

through the upper boundary the clockwise cell to 

its lefthand side. The moved vortex then merges 

with the central clockwise vortex, making it the 

biggest among three ( t =  T) .  

If the flow field were composed of four cells of 

equal size, then ~- -0 ,  and if it were composed of 

three cells of equal size, then ~ >0  when two are 

anticlockwise and ~ < 0 when they are clockwise. 

Thus, referring to the history of ~ in Fig. 3, we 

can see that the case of a 3 is characterized by 

competition between four-cell and three-cell 

structures, where two of them are anticlockwise. 

This figure also illustrates that the case of a = 2  is 

more aperiodic than a = 3 ;  in fact we can see a 

larger variation of the local maximum or mini- 

mum of ~; for a=2 .  

Figure 6 shows the time-average streamline 

patterns (steady streaming motion) obtained 

from ~ (x, y) defined as 

I f(n+m)T 
(x, y) =~T-Jn~ r y, t) dt 

where n and m are integers. This figure shows 

results with m =  1.We note that the steady motion 

is weakest for a = l  and strongest for a=3 .  The 

case of ~z--2 is significantly different if larger rn is 

used as shown in Fig. 7. This indicates that while 

the case of a = 3  has a persistent steady motion, 

that of a = 2  has no appreciable steady motion. 

4.2 Effect of Re and co 

As may be intuitively expected, the flow pattern 

is both ordered and periodic at low Reynolds 

numbers. Figure 8 is the numerical result for a :  

2, co:0.4, and R e - 5 0 0 .  The flow field represents 

a two cell structure composed of two clockwise 

cells at [ --0,  and becomes a one-cell structure at 

t :  T/8. This cell then generates negative vor- 

ticity from both upper and lower boundaries. 
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Fig. 5 

t - T  

Streamline and vorticity patterns for a=3 ,  co =0.4, and Re=5000  (case C). The incre- 

ment of the stream function is 0.02. These plots are for the last one (15th) period. 

1.0 1.0 

0.5 0,5 

T �84 

0.5 1.0 
0.0 0.0 

0.0 0.0 0.5 1.0 1.5 2.0 

(a) a= l  (b) a=2 

Fig. 6 

1 0  

0,0 I . , , I , , , - 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

(e) a=3 

Steady streamline patterns for three values of a shown; co=0.4, and Re=5000. The incre- 

ment of the stream function is 0.02. These plots are for the last one period (rn l). 
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l o  

0 . 5  

0 . 0  / 
0,0 0,5 1.0 1.5 2.0 

(a) a=2 

Fig. 7 

1.0 

0.5 

0 . 0  ' 
0.0 0.5 

/ 
1.0 1.5 2.0 2.5 3 . 0  

(b) a=3 

Steady streamline patterns for two values of a shown; w=0.4, and Re=5000. The incre- 
ment of the stream function is 0.02. These plots are for the last ten periods (m=10). 

Accumulation(curling) of this vorticity at two 

sides produces two anticlockwise cells resulting in 

a three-cell system ( t = 3 T / 8 ) .  The central cell 

then disappears and simultaneously the two cells 

are merged to become a one-cell system ( t = 5  T~ 

8). The procedure following is similar to the 

previous one. We can see that for this case, both 

the geometrical and temporal symmetric prop- 

erties (that is, (7) and either (8a) or (Sb)) are 

preserved. The solution is also obtained for R e - -  

1500, but the pattern's evolution is qualitatively 

the same as Re=500. 
The,. effect of co on the pattern's development 

is further studied. At lower co, T is large so we 

can say that each vortex has enough time in its 

development. As a consequence, the cell pattern is 

less complicated than that of higher co. At co= 1 

(classified as high co value), the switching time 

between generation of positive and negative vor- 

ticity is so small that each vortex generated near 

the boundaries is of small size. Some of these 

vortices are merged with each other to become a 

regular-size cell, whereas others are for some 

while meandering as solitary cells. As a result the 

flow pattern looks more complicated and irregu- 

lar than that of lower co. We can of course expect 

an anticyclonic flow at higher w. In this case, Eq. 

(1) gives the solution ~'=(2/co)sincot, upon 

which r takes a separable form, ~b=F(x,  y) 

sincot. 

Steady streaming plots shown in Fig. 9 reveal 

three symmetry properties. At low Re, the pattern 

is symmetric with respect to both x = a/2 and y = 

I/2 (Fig. 9(a)) .  At low w, the pattern tends to 

be symmetric with respect to x = a / 2  (Fig. 9(b) ) ,  

and at high w, the symmetric property is not 

appreciable (Fig. 9(c)) .  We also note that the 

last case shows the weakest steady motion. Effect 

of the steady motion on the stirring is not clear at 

this moment, and it is remained as a future study. 

4.3 Further discussions 

We have seen that for a : 3  the flow pattern is 

persistent and coherent. This implies that the cell 

structure is stable in a certain sense. To under- 

stand the stability mechanism, we first resort to 

the quasi-steady flow of a spin-up model (van 

Heijst et al, 1990 and Suh, 1994). In order to 

explain a critical phenomenon in the evolution of 

cell structures, Suh(1994) has studied the devel- 
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t .6T~ t-6T/~l 

:. 

t=TT/8 t=7Tf8 

Fig. 8 

t-T t=T 

i l i ' '  
Streamline and vorticity patterns for a--2, co =0.4, and Re :=500 (case D). The increment 
of the stream function is 0.02. These plots are for the last one (20th) period. 

opment of a cellular flow in a rectangle of a=:3 

initially composed of two large clockwise cells 

and one small central cell in between them as 

sketched in Fig. 10(a). He has numerically shown 

that tlhere exists a critical width of the central cell 

at which a slightly larger width results in an 

eventually growing of the central cell while a 

slightly smaller width makes the central cell 

disappeared. Fig. 10(b) corresponds to the for- 

mer case. The central cell is continuously fed with 

negative vorticity from the left-top and right 

-bottom boundaries induced by the two large 

vortical flows. This process ultimately leads to a 

structure of three cells of almost equal size. 

Now we consider the present model (Fig. 5). 

As seen from Eq. (1), the whole flow field 

receives vorticity in a rate 2 coso)t (recall that the 

quasi-steday state of the spin-up model has no 

such body forces). Therefore during a half period 

(-T/4<_t<_ T /4 )  it receives vorticity as much as 

4 /o) ,and -4/o) during the latter half  period. 

Receiving positive vorticity in turn tends to make 

the clockwise cell bigger and the anticlockwise 

smaller, and vice versa. However this repetitive 

vorticity supply is not enough to break the coher- 

ent structure present in the lefthand side of Fig. 5. 

it is abrupt to assume that a smaller o) causing 

a larger vorticity supply can break this structure. 

On the other hand, we can of course expect an 

equal chance of obtaining an opposite flow struc- 

ture by changing the initial conditions. For 

instance we can obtain a flow structure that gives 

a time series of 9 I, symmetric with respect to the 

t-axis of Fig. 3 for a = 3  by starting the computa- 

tion from l =  7"/2 not / = 0 ;  this is mathemati- 

cally guaranteed by the tact that the governing 

equations are invarient under the transformation 

(8a) or (8b). Consequently, the given solution 

can be chracterized as 'bistable'. These two stable 

structures are intuitively conjectured to be 'bro- 

ken' or "connected' to each other when o) is 

small enough. 

Understanding the complex evolution of a 

physical phenomenon in terms of a figuratively 

simple dynamical model is often very useful. 

Figure 11 shows the so called 'two-well potential' 

problem. An infinitesimal particle of finite mass 

slides on a surface moving sinusoidally in the 
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(a) ~=0.4, Re=500 
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(b) o)=0.2, R e = 5 0 0 0  

1 . 0  

o.o o.s ~.o ~.s 2,o 

(c) 0~=1.0, R e = 5 0 0 0  

Fig.  9 Steady stream]ine patterns tbr three sets of 
parameters for a=2 .  The increment of the 
stream function is 0.01. These plots are for the 
last ten periods ( n z :  10). 

55 C7 
(a) Initial state 

(b) Growing of the central cell 

Fig. 10 Development of a three-cell flow structure 
inside a rectangle of a = 3  ; the central cell 
being initially narrow. 

~~d~ 
- -  

/ 1 1 1 1 1 1 ~ /  ( ) I I / I I I I / 1 1 1 1 1 1  I I I I I I , .  

Fig. 11 Two-well potential system, where a particle 
(black circle) with infinitesimal size but 
finite mass slides on an oscillating surface 
having two wells. 

horizontal  direction. The equat ion governing the 

particle's mot ion  is the Duffing equat ion  and has 

been first studied extensively by Holmes (1979); 

see also the text by Moon  (1987). This  system is 

here purposed to serve as a figurative model  that 

reveals some ingredients of the present hydro- 

dynamical  model. At a suitable parameter  set, the 

particle can oscillate locally in the either left or 

right well depending on  the initial  condi t ions;  in 

fact this is a typical example of  bistable systems. 

On the other hand, the particle can oscillate 

global ly visiting both sides in the same probabi l -  

ity, if the frequency of  the external forcing is small 

enough.  These two properties (i. e. that the system 

is bistable and that the two stable motions are 

connected at a small frequency) are well represen- 

tative of the present system. The third property of  

the two-wel l  potential system is a critical phe- 

nomenon .  For a parameter set at which the parti- 

cle's mot ion is locally confined, a small change in 

the init ial  condi t ions  can give the motion a round 

the opposite well. The same phenomenon  is con- 

jectured to occur in the present flow system. A 

similar  phenomenon  has also been observed by 

Sub (1997) for the case of a two-d imens iona l  

osc i l l a t ing- l id -dr iven-cavi ty  problem. 

5. Conclusions 

The time evolut ion of vortical flow structures 
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inside a rectangle subject to a sinusoidal forcing 
has been numerically investigated. The parameter 
values for the base case (case B in Table I) 
among the various sets are; a = 2 ,  ~o=0.4, and Re 
=5000. Three parameters are changed separately 
and the solution of each case is carefully 
examined. Some important findings can be sum- 
marized as follows. 

(1) At high Reynolds numbers, the numerical 
instability cannot be overcome only by decreasing 
the time step; the spatial resolution must be in- 
creased. 

(2) The flow pattern is almost periodic and 
anticyclonic at a = l ,  and the pattern becomes 
irregular and aperiodic at a = 2  and 3. 

(3) The case of a = 2  can be characterized by 
competition between two-cell and three-cell 
structures. For a = 3 ,  the cell structure is slightly 
more stable than a = 2  and it can be characterized 
by competition between three-cell and four-cell 
structures. 

(4) At lower Reynolds numbers (Re- -500  and 
1500), the flow patterns develop regularly and 
periodically. The symmetry propeties are exactly 
preserved at these values of Re. 

(5) At higher co(co=l),  the flow field is com- 
posed of  many vortices of small size and resultant- 

ly the pattern apparently looks more complicated. 
(6) Three dynamical properties of this system 

can be figuratively explained from the two-well 
potential problem. 
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